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Abstract14

This paper proposes a unified approach for dynamic modeling and simulations of general15

tensegrity structures with rigid bars and rigid bodies of arbitrary shapes. The natural16

coordinates are adopted as a non-minimal description in terms of different combinations17

of basic points and base vectors to resolve the heterogeneity between rigid bodies and rigid18

bars in three-dimensional space. This leads to a set of differential-algebraic equations with19

a constant mass matrix and free from trigonometric functions. Formulations for linearized20

dynamics are derived to enable modal analysis around static equilibrium. For numerical21

analysis of nonlinear dynamics, we derive a modified symplectic integration scheme that22

yields realistic results for long-time simulations, and accommodates non-conservative23

forces as well as boundary conditions. Numerical examples demonstrate the efficacy of the24

proposed approach for dynamic simulations of Class-1-to-k general tensegrity structures25

under complex situations, including dynamic external loads, cable-based deployments, and26

moving boundaries. The novel tensegrity structures also exemplify new ways to create27

multi-functional structures.28
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1 Introduction30

1.1 Background31

The term tensegrity, combining “tensile” and “integrity”, was coined by Buckminster Fuller [1]32

to describe a kind of prestressed structure created by Ioganson and Snelson [2]. A commonly33

adopted definition is given by Ref. [3]: a tensegrity structure is a self-sustaining composition34

of rigid members and tensile members, and if there is at least a torqueless joint connecting k35

rigid members, it is called a Class-k tensegrity. Since its invention, the outstanding features36

of tensegrity structures were gradually recognized, including high stiffness-to-mass ratio [4],37

deployability [5–7], and the ability to integrate structure design with control [3], etc. Thus, it38

has drawn increasing attention from multiple fields, such as civil engineering [8–10], aerospace39

[6, 11–13], and robotics [14, 15] [16–18].40

Recent decades have witnessed two trends of developments in the tensegrity literature.41

One trend focuses on “bars-only” tensegrity structures (See, for example, Fig. 1(a)), where the42

rigid members are axial-loaded thin bars. This setting maximizes material efficiency, making43

them strong and lightweight [3]. They are also deployable using simple cable-based actuations44

[5–7], and are mostly seen in civil and aerospace engineering [8–11, 19, 20]. The other trend45

concerns tensegrities with rigid bodies, which are allowed to have complex shapes such as46

the “X-Piece” [21]. These structures usually have simpler connectivity and larger capacity47

spaces while still being modular and compliant. They mimic the interactions of muscles and48

bones [3, 8], such as the vertebrate spine [22] (Fig. 1(b)), leading to bio-inspired designs like49

tensegrity joints [23] and tensegrity fishes [17].

 

Fig. 1 Different types of tensegrity structures: (a) a “bars-only”tensegrity [24]; (b) a vertebrate spine (Copyright
© Intension Designs [25]) and spine-like tensegrities with rigid bodies; (c) a fusiform tensegrity [26], and (d) a
tensegrity bridge [27]. (a,c,d) are reprinted with permission from Elsevier.

50

1.2 Formulation of the Problem of Interest for this Investigation51

In recent years, a growing interest in merging these two trends has led to the so-called52

general tensegrity structures, which have the potential of combining the above advantages. For53

instance, Liu et al. [26] studied the kinematics and statics of a fusiform tensegrity (Fig. 1(c))54

which combines a triangular rigid body and a rigid bar. Ma et al. [28] formulated the static55

equilibrium equations for form-finding problems of Class-1 general tensegrities. Wang et56

al. [27, 29] studied the topology-finding method and the self-stress design method for new57
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structures like the tensegrity bridge (Fig. 1(d)), which has bars as supporting struts and a rigid58

plate as the bridge deck.59

However, none of these works address the dynamic analysis problem of general tensegrity60

structures with arbitrary rigid bodies and rigid bars, which is the problem of interest in this61

paper.62

The primary challenge that arises in this quest is the heterogeneity between rigid bodies63

and rigid bars in 3D space. This heterogeneity is threefold. Firstly, while the rotational inertia64

of a normal rigid body is defined by a nonsingular inertia matrix, the rotational inertia about65

the longitudinal axis of a thin bar is vanishing as compared to other axes. This eventually66

leads to singular inertia matrices [30]. Secondly, the rotation and angular velocity about the67

longitudinal axis of a rigid bar is ill-defined [31]. Thirdly, a rigid bar can have ball joints or68

boundary conditions only at its two endpoints, while a rigid body can be jointed anywhere.69

The secondary challenge is the formulation of the tensional forces of tensile cables. To70

induce active movements of tensegrity structures by cable-based actuation, the cable variables71

(e.g. force densities or rest lengths) are used as control inputs. Therefore, it is beneficial to the72

design of control schemes that the dependence on the cable variables is explicitly revealed in73

the the dynamic formulations of general tensegrity structures.74

In short, the dynamic formulations of general tensegrity structures should have not only75

the flexibility to model the heterogeneous rigid bodies and rigid bars, but also the clarity76

to express the cable variables. Furthermore, both linearized and nonlinear dynamic analysis77

methods should be provided to guarantee the practicality of the dynamic formulations.78

1.3 Literature Survey79

For “bars-only” tensegrity structures, the dynamic analysis problems were studied in early80

works by Sultan et al. [7, 32]. However, their use of the Euler angle-based modeling method81

leads to highly complex formulations as the number of structural components increases. Cefalo82

et al. [31] propose a comprehensive dynamic model based on quaternions without the use of83

Euler angles. However, this model is limited to Class-1 tensegrity structures. Skelton et al.84

[33–37] proposed and investigated a non-minimal description approach, which uses Cartesian85

coordinates to describe rigid bars and naturally incorporates Class-k tensegrities. Compared86

to other description approaches, the non-minimal description approach is not only free from87

trigonometric terms but also has the advantage of leading to elegant differential algebraic88

equations (DAEs) with a constant mass matrix. Furthermore, the tensional force of cables can89

be concisely expressed by the non-minimal description approach and linear dependence on90

the cable variables is revealed and utilized in the dynamic and control problems [19, 38].91

For tensegrity structures with rigid bodies, the dynamic problems can be addressed by92

incorporating tensile cables into established multi-rigid-body dynamics. For example, com-93

mercial softwares like MSC Adams [39] and physics engines like Bullet [40] have been94

used. In particular, based on the versatile Bullet Physics engine, NASA developed the NASA95

Tensegrity Robotics Toolkit (NTRT) [41] to simulate a number of tensegrity robots with rigid96

bodies [23, 42–45]. However, the underlying dynamic models and formulations of commer-97

cial softwares and physics engines are implicit to users, meaning that the cable variables are98

not explicitly revealed. This fact hinders the deeper understanding of tensegrity dynamics and99

developments of model-based control methods.100
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For general tensegrity structures with both arbitrary rigid bodies and rigid bars, no dynamic101

formulations have been proposed in the literature. While the statics problems, such as form-102

finding, topology-finding and self-stress design, have been studied recently [27–29], these103

methods cannot be extended to dynamic problems straightforwardly because of the afore-104

mentioned heterogeneity of different rigid members. In particular, if the minimal description105

approach [28] is adopted, then the complexity of trigonometric terms is inevitably intro-106

duced into the dynamic formulations. On the other hand, if a fully non-minimal description107

is developed to include both rigid bodies and rigid bars, then its aforementioned advantages108

are expected to be retained. However, a non-minimal description generally leads to dynamic109

equations in the form of DAEs, which require careful treatments of the algebraic constraints110

to avoid constraint drift that could degrade the numerical accuracy in longtime simulations.111

1.4 Scope and Contribution of this Study112

In this study, we aim to develop a unified approach for the dynamic analysis of general113

tensegrity structures with both rigid bodies and rigid bars.114

The key idea is to develop a fully non-minimal description method by reforming the natural115

coordinates formulations [46–49], so that both rigid bars and rigid bodies are described by116

different combinations of basic points and base vectors, which form different types of natural117

coordinates.118

This non-minimal description method addresses the above-mentioned primary challenge119

of heterogeneity, because it effectively resolves the singularity and ill-definedness problems.120

Furthermore, the exhaustive types of coordinates facilitate the sharing of basic points for121

jointed rigid members, while boundary conditions can be dealt with a coordinate-separating122

strategy.123

To address the secondary challenge, we employ the concept of polymorphism and con-124

version matrices, to abstract formulations in succinct mathematical expressions. Thereby, the125

generalized tension forces of tensile cables, which may connect to different types of rigid126

members with different types of natural coordinates, can be explicitly expressed unifyingly127

and the linear dependence on cable variables can be easily revealed.128

Therefore, the main contribution of this study is the developing of a unified approach for129

dynamic analysis of 3D Class-k (k ≥ 1) general tensegrity structures, addressing both the130

primary and secondary challenges.131

The proposed approach retains the advantages of non-minimal coordinates, such as the132

constant mass matrix and the absence of trigonometric functions. Nonetheless, it also formu-133

lates dynamic equations in the form of DAEs, where algebraic equations are present to enforce134

the constraints for rigid members and joints. With this consideration in mind, we develop solu-135

tion methods for both constrained linearized dynamics and constrained nonlinear dynamics.136

Specifically, the dynamics linearized around static equilibrium is reduced to the degrees of137

freedom using the reduced-basis method, allowing accurate computations of natural frequen-138

cies and mode shapes. On the other hand, a modified symplectic integration (MSI) scheme is139

derived for numerical simulations of the constrained nonlinear dynamics, featuring realistic140

behaviors in long-time simulations as well as exact enforcement of algebraic constraints.141

The effectiveness of the proposed approach is tested by means of numerical examples.142

They demonstrate intuitive ways to design innovative general tensegrities with potential multi-143

functionalities.144
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The proposed approach is different from the existing methods already established in145

the literature in several aspects. Firstly, while the existing non-minimal descriptions provide146

dynamic formulations for either rigid bodies [47–50] or rigid bars [33–37], the proposed147

approach covers both of these heterogeneous rigid members, thanks to the flexibility in148

selecting basic points and base vectors. Secondly, compared to existing natural coordinate149

formulations for rigid multibody systems [47–50], the proposed approach develops unified150

formulations for the tension force of cables that is unique in tensegrity systems. Furthermore,151

while the proposed MSI scheme belongs to the Zu-class symplectic schemes [51, 52], this152

scheme is recast from the viewpoint of approximations and limits to accommodate non-153

conservative forces and boundary conditions. Finally, Class-k (k > 1) tensegrities with jointed154

rigid bars and rigid bodies that are rarely seen in the literature are presented in the numerical155

examples.156

1.5 Organization of the Paper157

The rest of this paper is organized as follows. Sec. 2 derives the unified formulations for158

3D rigid bodies and rigid bars, based on which Sec. 3 models general tensegrity structures.159

Sec. 4 derives modal analysis and nonlinear dynamic analysis methods, followed by numerical160

examples in Sec. 5. Finally, conclusions are drawn in Sec. 6.161

2 Unifying rigid bodies and rigid bars using natural162

coordinates163

In this section, the natural coordinates [50, 53] are adapted for unifying the non-minimal164

descriptions of rigid bodies and rigid bars, which are collectively called rigid members, and165

indistinguishably labeled by circled numbers 1 , 2 , . . . , or circled capital letters I , J , . . . ,166

etc. Thus, a quantity with a capital subscript, such as ()I , indicates the quantity belongs to the167

Ith rigid member.168

2.1 Rigid bodies of arbitrary shapes169

2.1.1 3D rigid bodies170

 

Fig. 2 A 3D rigid body described by four types of natural coordinates. Rigid bodies are drawn by red lines. Basic
points and base vectors are colored in green.

Consider a tetrahedron which exemplifies an arbitrary 3D rigid body, as shown in Fig. 2,171

where basic points rI,i, rI,j , rI,k, rI,l ∈ R3 and base vectorsuI ,vI ,wI ∈ R3 are fixed on the172
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rigid body and expressed in the global inertial frame Oxyz. Four types of natural coordinates,173

i.e.174

qI,ruvw = [rTI,i,u
T
I ,v

T
I ,w

T
I ]

T, qI,rrvw = [rTI,i, r
T
I,j ,v

T
I ,w

T
I ]

T,

qI,rrrw = [rTI,i, r
T
I,j , r

T
I,k,w

T
I ]

T, and qI,rrrr = [rTI,i, r
T
I,j , r

T
I,k, r

T
I,l]

T ∈ R12,
(1)

can be used to describe a 3D rigid body, corresponding to Fig. 2 (a) to (d), respectively,175

where ()ruvw, etc, denote the type of natural coordinates. For the latter three types of natural176

coordinates, we can formally define uI = rI,j−rI,i, vI = rI,k−rI,i, and wI = rI,l−rI,i,177

so that they can be converted to the first type by178

qI,ruvw = YruvwqI,ruvw = YrrvwqI,rrvw = YrrrwqI,rrrw = YrrrrqI,rrrr, (2)

where the conversion matrices are defined as, respectively,179

Yruvw =

[
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

]
⊗ I3, Yrrvw =

[
1 0 0 0

−1 1 0 0
0 0 1 0
0 0 0 1

]
⊗ I3,

Yrrrw =

[
1 0 0 0

−1 1 0 0
−1 0 1 0
0 0 0 1

]
⊗ I3, andYrrrr =

[
1 0 0 0

−1 1 0 0
−1 0 1 0
−1 0 0 1

]
⊗ I3

(3)

where I3 is a 3× 3 identity matrix, and ⊗ denotes the Kronecker product.180

Note that the base vectors are assumed to be non-coplanar, thus the natural coordinates181

actually form an affine frame attached to the 3D rigid body. Consequently, the position vector182

of a generic point on the 3D rigid body can be expressed by183

r = rI,i + cI,1uI + cI,2vI + cI,3wI = CI,bodyqI,body, (4)

where cI,1, cI,2 and cI,3 are the affine coordinates; CI,body = ([1, cI,1, cI,2, cI,3]⊗ I3)Ybody184

is a transformation matrix for qI,body; ()body can be any of ()ruvw, ()rrvw, ()rrrw, or ()rrrr.185

To ensure rigidity of the body, the natural coordinates qI,body must satisfy six intrinsic186

constraints187

ΦI(qI,body) =


uT

I uI−ūT
I ūI

vT
I vI−v̄T

I v̄I

wT
I wI−w̄T

I w̄I

vT
I wI−v̄T

I w̄I

uT
I wI−ūT

I w̄I

uT
I vI−ūT

I v̄I

 = 0 (5)

where ūI , v̄I and w̄I are constant vectors in a local frame, which is fixed on the rigid member188

(See also Sec. 2.3). Then, the position and orientation of a 6-DoF 3D rigid body can be defined189

by twelve coordinates (any type in (1)) and six constraints (5).190

2.2 3D rigid bars191

Two types of natural coordinates, i.e. qI,ru = [rTI,i,u
T
I ]

T and qI,rr = [rTI,i, r
T
I,j ]

T ∈ R6, can192

describe a 3D rigid bar, corresponding to Fig. 3 (a) and (b), respectively. Define conversion193

matrices194

Yru = [ 1 0
0 1 ]⊗ I3 and Yrr =

[
1 0

−1 1

]
⊗ I3 (6)
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Fig. 3 A 3D rigid bar described by two types of natural coordinates.

Then, the position vector of a generic point along the longitudinal axis of the rigid bar is given195

by196

r = rI,i + cIuI = CI,barqI,bar (7)
where the coefficient cI depends on the relative position of the generic point; CI,bar =197

([1, cI ]⊗ I3)Ybar is the transformation matrix for qI,bar; ()bar can be either ()ru or ()rr. And198

the intrinsic constraint to preserve the bar length is199

ΦI(qI,bar) = uT
I uI − ūT

I ūI = 0 (8)

Hence, the position and orientation of a 5-DoF 3D rigid bar can be defined by six200

coordinates and one constraint (8).201

2.3 Unified formulations and mass matrices202

Table 1 Polymorphism of natural coordinates for rigid bodies and rigid bars

Degrees of
freedom

Number of
coordinates

Number of
constraints

Types of
natural coordinates

3D Rigid Body 6 12 6 ruvw rrvw rrrw rrrr
3D Rigid Bar 5 6 1 ru rr

The transformation relations (4) and (7) for the standard types of natural coordinates can203

be put into a unifying form204

r = CIqI , (9)
which is a polymorphic expression, meaning that the formulations of CI and YI vary with205

the type of qI , as summarized in Tab. 1. However, note that CI is not a function of qI .206

Consequently, the velocity of a generic point is given by ṙ = CI q̇I , which can be used to207

derive the mass matrix. Let ρI denote the longitudinal or volume density of the rigid member208

I . Then, the kinetic energy can be computed by an integral over its entire domain Ω as209

TI =
1

2

∫
Ω

ρI ṙ
TṙdΩ =

1

2

∫
Ω

ρI q̇
T
I C

T
I CI q̇IdΩ =

1

2
q̇T
I MI q̇I (10)
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where MI is a constant mass matrix with polymorphism defined by210

MI =

∫
Ω

ρIC
T
I CIdΩ = Y T

I

(∫
Ω

(
ρI

[
1 cTI
cI cIc

T
I

])
dΩ⊗ I3

)
YI

= Y T
I

([
∫Ω ρIdΩ ∫Ω ρIc

T
I dΩ

∫Ω ρIcIdΩ ∫Ω ρIcIc
T
I dΩ

]
⊗ I3

)
YI

(11)

It is possible to express the mass matrix by conventional inertia properties, such as the211

mass, the center of mass, and the moments of inertia of a rigid member. To this end, let’s212

introduce a local Cartesian frame Ōx̄ȳz̄ which is fixed on the rigid member I , as shown in213

Fig. 4. Quantities expressed in this local frame are denoted by an overline (̄). Without loss of214

generality, let its origin Ō coincide with the mass center, such that r̄I,g = 0. For a 3D rigid215

body, let its axes align along the principal axes of inertia. For a 3D rigid bar, let its x̄ axis216

aligns along the longitudinal direction.

 

Fig. 4 The basic point r̄I,i, the base vectors ūI , v̄I and w̄I , the mass center r̄I,g , and a generic point r̄I in the
local Cartesian frame of (a) a 3D rigid body or (b) a 3D rigid bar.

217

Because the basic points and base vectors are fixed on the rigid members, their coordinates218

in the local frame are constant. Let’s define a polymorphic matrix219

X̄I =

{
[ū, v̄, w̄] for a rigid body

[ū] for a rigid bar

(12a)
(12b)

Then, according to (9), the position vector of a generic point in the local frame can be expressed220

by r̄ = r̄I,i + X̄IcI , which gives221

cI = X̄+
I (r̄ − r̄I,i) (13)

where ()+ denotes the Moore-Penrose pseudoinverse. For (12a), because the columns are222

linearly independent, i.e. X̄ has full rank, the pseudoinverse is equal to the matrix inverse.223
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Using (13), the following expressions for use in (11) can be derived:224 ∫
Ω

ρIdΩ = mI∫
Ω

ρIcIdΩ = mIX̄
+ (r̄I,g − r̄I,i) = −mIX̄

+r̄I,i∫
Ω

ρIcIc
T
I dΩ = X̄+

(
J̄I −mI r̄I,ir̄

T
I,g −mI r̄I,gr̄

T
I,i +mI r̄I,ir̄

T
I,i

)
X̄+T

= X̄+
(
J̄I +mI r̄I,ir̄

T
I,i

)
X̄+T

(14a)

(14b)

(14c)

(14d)

where mI is the mass of the rigid member I ; J̄I contains the moments of inertia and225

necessitates some discussions:226

For a 3D rigid body, J̄I is given by227

J̄I =

∫
Ω

ρI r̄r̄
TdΩ =

∫
Ω

ρI

x̄2 ȳx̄ z̄x̄
x̄ȳ ȳ2 z̄ȳ
x̄z̄ ȳz̄ z̄2

 dΩ, (15)

while the conventional inertia matrix is given by228

ĪI =

∫
Ω

ρI

ȳ2 + z̄2 −ȳx̄ −z̄x̄
−x̄ȳ x̄2 + z̄2 −z̄ȳ
−x̄z̄ −ȳz̄ x̄2 + ȳ2

dΩ (16)

Hence, we have J̄I = 1
2 trace

(
ĪI
)
I3 − ĪI .229

For a 3D rigid bar, the expression of J̄I is the same as (15), except that only the element230

x̄2 is nonzero. And the pseudoinverse of X̄I = [ūx, 0, 0]
T is X̄+

I = [1/ūx, 0, 0]. Therefore,231

we have X̄+
I J̄IX̄

+T
I =

(∫
Ω
ρI x̄

2dΩ
)
/ū2

x.232

For an advanced treatment of the inertia representation for rigid multibody systems in233

terms of natural coordinates, we refer the interested readers to our previous paper [46].234

3 Modeling tensegrity structures235

Given the formulations of rigid members, the modeling of general Class-k (k ≥ 1) tensegrity236

structures additionally requires formulations for tensile cables, torqueless joints, and boundary237

conditions, which are derived in this section. A system is assumed to have nb rigid members238

and ns tensile cables.239

3.1 Ball joints240

A Class-k (k > 1) tensegrity structure allows the use of torqueless ball joints, each of which241

can connect up to k different rigid members. Depending on the placements of basic points,242

there are two modeling methods.243

The first is a general method, as exemplified by Fig. 5 (a), where a ball joint connects point244

a of rigid body I on point b of rigid body J , and consequently imposing a set of extrinsic245

9



 

Fig. 5 (a) Two 3D rigid bodies or (b) a 3D rigid body and a 3D rigid bar connected by a ball joint, which is represented
by a circle filled with light blue.

constraints246

Φex(qI , qJ) = rI,a − rJ,b = CI,aqI −CJ,bqJ = 0, (17)
where (9) is used for the second equality.247

The second method is to share the basic points between rigid members, as exemplified by248

Fig. 5 (b), where a ball joint is located at the basic point a. So we have natural coordinates249

qI = [rTI,i, r
T
a ,v

T
I ,w

T
I ]

T for the rigid body I , and qJ = [rTa , r
T
J,j ]

T for the rigid bar J :250

they share the basic point’s vector ra.251

If a ball joint connects k (k>2) rigid members, it can be modeled as k−1 ball joints252

overlapping at one place.253

The second method has computational advantages over the first one because it needs254

no extrinsic constraint, and it reduces the number of system’s coordinates. Thanks to the255

exhaustion in deriving different combinations of the natural coordinates (Secs. 2.1 and 2.2),256

up to four or two basic points of a 3D rigid body or rigid bar can be used for sharing with other257

rigid members. Therefore, the second method is generally sufficient to model most Class-k258

(k>1) tensegrities, and the extrinsic constraints (17) are rarely needed.259

3.2 Boundary conditions260

In practice, most tensegrity structures have some members with prescribed motions, such that261

their positions, velocities, and accelerations are either partly or entirely given. For example,262

some rigid members in geodesic tensegrity domes are pin-jointed to the ground, or the263

rigid body motions of a self-standing tensegrity structure are to be eliminated. It would264

be cumbersome to derive case-by-case formulations for these prescribed rigid members.265

Alternatively, we can extend the above derivations, but also without loss of flexibility, by266

separating the prescribed and free (unprescribed) coordinates. To do this, let’s denote the267

numbers of prescribed, free, and total coordinates for the rigid member I by ñI , ňI , and268

nI = ñI + ňI , respectively, and for the system by ñ, ň, and n = ñ + ň, respectively. Then,269

the separation and reintegration of the coordinates of the rigid member I and of the system270

are defined by271 (
q̃I
q̌I

)
=

[
ẼT

I

ĚT
I

]
qI , qI =

[
ẼI , ĚI

](q̃I
q̌I

)
,(

q̃
q̌

)
=

[
ẼT

ĚT

]
q, and q =

[
Ẽ, Ě

](q̃
q̌

)
,

(18)
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where q̃I ∈ RñI and q̃ ∈ Rñ are prescribed coordinates; q̌I ∈ RňI and q̌ ∈ Rň are free272

coordinates; [ẼI , ĚI ] ∈ ZnI×nI and [Ẽ, Ě] ∈ Zn×n are constant orthonormal matrices that273

only have zeros and ones as elements.274

The relations between the system’s coordinates and those of rigid members and prescribed275

points are given by276

qI = TIq = T̃I q̃ + ŤI q̌, for I = 1, . . . , nb, (19)

where TI , T̃I = TIẼ, and ŤI = TIĚ are constant matrices that select the right elements277

from the system, and also properly embody the sharing of basic points as presented in Sec. 3.1.278

Consequently, the relations for velocities and accelerations are simply q̇I = TI q̇ and q̈I =279

TI q̈, respectively. On the other hand, the variation should exclude the prescribed coordinates280

as281

δqI = ŤIδq̌. (20)
Note that the relations (18) and (19) are actually implemented as index-selecting methods282

in the computer code so that expensive matrix multiplications are avoided.283

Last but not the least, any intrinsic constrains in (5) and (8) and extrinsic constrains in (17)284

that contain no free coordinates should be dropped. The remaining constraints are collected285

by Φ̌(q), whose Jacobian matrix is defined by Ǎ(q) = ∂Φ̌/∂q̌.286

3.3 Generalized forces287

 

Fig. 6 Two 3D rigid bodies subjected to gravity, a concentrated force, and tension forces of a cable. The points of
action are colored in blue.

Using (9), (19), and (20), the position and its variation of a point of action p on the rigid288

member I are, respectively,289

rI,p = CI,pTIq and δrI,p = CI,pŤIδq̌. (21)

Consider a concentrated force fI,p exerted on point p, as shown on the left of Fig. 6, the virtual290

work done by fI,p is δWI,p = δrTI,pfI,p = δq̌TF̌I,p, where291

F̌I,p = ŤT
I CT

I,pfI,p (22)

is the generalized force for fI,p.292
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In particular, the gravity force fI,g is exerted on the mass center rI,g. Therefore, the293

generalized gravity force for the rigid member I is given by F̌I,g = ŤT
I CT

I,gfI,g, which is a294

constant vector.295

3.4 Tensile cables296

In this paper, we adopt a common practice [31, 36, 54] which assumes that the cables are297

massless, so that their inertia forces are ignored. The extensions to consider massive cables298

will be discussed in Sec. 6. In the following, the cables’ tension forces acting on the rigid299

members are formulated.300

Suppose the jth cable connects point a of the rigid member I and point b of the rigid301

member J , as shown in Fig. 6. It can be represented by a vector302

lj = rJ,b − rI,a = CJ,bTJq −CI,aTIq = Jjq (23)

where we use (21) and Jj = CJ,bTJ −CI,aTI is a constant matrix. Consequently, the current303

length and its time derivative of the cable are given by, respectively,304

lj =
√

lTj lj =
√

qTUjq and l̇j =
lTj l̇j√
lTj lj

=

(
qTUj q̇

)
lj

, (24)

where Uj = JT
j Jj is also constant.305

Define the force density by γj = fj/lj , where fj is the tension force magnitude. Then, the306

tension force is given by either fj = fj l̂j or fj = γjlj , where l̂j = lj/lj is the unit direction307

vector.308

Note that a cable generates a pair of tension forces exerted on points a and b with opposite309

directions. Therefore, according to (22), the generalized tension force for the jth cable reads310

Q̌j = ŤT
I CT

I,afj − ŤT
J CT

J,bfj = −ĚTJT
j fj (25)

Consequently, the system’s generalized tension force is the sum over all cables311

Q̌ =
∑ns

j=1

(
−ĚTJT

j fj

)
= −ĚT

ns

⊕
j=1

(JT
j lj)γ (26)

where γ = [γ1, · · · , γns ]
T collects the force densities and⊕means the direct sum of matrices.312

The expression (26) shows the system’s generalized tension force is linear in the cables’ force313

densities. This notable property is also found in the dynamics framework for “bars-only”314

tensegrities by Skelton et al. [35, 36]. It is beneficial for the design of cable-based control315

schemes, which, however, will not be elaborated in this paper and subject to further research.316

Expression (26) allows any constitutive laws of the cables. Following common practices,317

we assume linear stiffness, linear damping, and a slacking behavior. Denote the rest length by318

µj , the stiffness coefficient by κj , and the damping coefficient by ηj . Then, the tension force319
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magnitude is given by320

fj =

{
f+
j , if f+

j ≥ 0 and lj ≥ µj

0, else
with f+

j = κj(lj − µj) + ηj l̇j . (27)

4 Dynamic analysis formulations321

4.1 Dynamic equation322

Recalling the rigid member’s kinetic energy (10) and the coordinate selection (19), the system’s323

kinetic energy is simply the sum over all rigid member T =
∑nb

I=1 TI = 1
2 q̇

TMq̇, where324

M =
∑nb

I=1 T
T
I MITI is constant mass matrix. Then, the generalized inertial force is derived325

with respect to the free coordinates:326

d

dt

(
∂T

∂ ˙̌qT

)
=

d

dt

(
Ḿq̇

)
=

d

dt

(
Ḿ
(
Ě ˙̌q + Ẽ ˙̃q

))
= M̌ ¨̌q + M̄ ¨̃q (28)

where Ḿ = ĚTM , M̌ = ḾĚ, and M̄ = ḾẼ are different mass matrices that will be327

used later.328

Suppose a potential V (q) is given as a function of the system’s total coordinates, then the329

generalized potential force in free coordinates is given by Ǧ = −∂V (q)/∂q̌T. Furthermore,330

define F̌ = Ǧ+Q̌+ F̌ ex to include the generalized potential force Ǧ, the generalized tension331

force Q̌, and any other external generalized forces F̌ ex.332

For the dynamics of a tensegrity structure, the Lagrange-d’Alembert principle [55] states333

that the virtual work vanishes for all inertial forces, generalized forces, and constraint forces334

acting on the virtual displacement:335

δq̌T
(
M̌ ¨̌q + M̄ ¨̃q

)
− δq̌TF̌ − δq̌T

(
ǍTλ

)
= 0 (29)

which leads to the Lagrange’s equation of the first kind336 {
M̌ ¨̌q + M̄ ¨̃q − Ǧ(q)− Q̌(q, q̇,µ)− F̌ ex(q, q̇, t)− ǍT(q)λ = 0

Φ̌(q) = 0

(30a)
(30b)

where the dependency is explicated, and the rest lengthsµwill be used as cable-based actuation337

values. One should also keep in mind that q contains prescribed coordinates q̃, which, along338

with ˙̃q and ¨̃q, are interpreted as known functions of time t.339

Thanks to the use of natural coordinates, the dynamic equation (30) gets rid of trigono-340

metric functions as well as inertia quadratic velocity terms for centrifugal and Coriolis forces,341

leaving a constant mass matrix.342

For later use, the differential part (30a) can be rewritten as343

˙̌p− F̌ − ǍTλ = 0 (31)

where p̌ = ∂T/∂ ˙̌qT = Ḿq̇ is the generalized momentum in free coordinates.344
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4.2 Linearized dynamics around static equilibrium345

In order to perform modal analysis on general tensegrity structures, this subsection derives346

the formulations of linearized dynamics around static equilibrium.347

Dropping all time-related terms in the dynamic equation (30) leads to the static equation348 {
−F̌ (q)− ǍT(q)λ = 0

Φ̌(q) = 0

(32a)
(32b)

For later use, substituting the expressions (26) and (27) of tensile cables to the force-349

balancing part (32a) gives350

−F̌ ex + (B̌ℓ− B̌µ)− ǍT(q)λ = 0 (33)

where B̌ = ĚT⊕ns
j=1(κjJ

T
j l̂j); ℓ = [l1, · · · , lns

]T and µ = [µ1, · · · , µns
]T collects the351

cables’ current lengths and rest lengths, respectively. For the problem of inverse statics, the352

equation (33) reveals the linear dependency on cables’ rest lengths µ. Therefore, it will be353

useful for cable-based deployments of tensegrity structures, as demonstrated in the example354

section Sec. 5.355

Consider small perturbations in the free coordinates and Lagrange multipliers as356

q = qe + Ěδq̌, q̇ = q̇e + Ěδ ˙̌q, q̈ = q̈e + Ěδ ¨̌q, and λ = λe + δλ, (34)

where q̇e = q̈e = 0, and (qe,λe) satisfies the static equation (32). Substituting (34) into (30)357

and expanding it in Taylor series to the first order lead to358 M̌δ ¨̌q − ∂F̌

∂ ˙̌q
δ ˙̌q − ∂F̌

∂q̌
δq̌ −

∂
(
ǍTλe

)
∂q̌

δq̌ − ǍTδλ = 0

Ǎδq̌ = 0

(35a)

(35b)

Define Ň as a basis of the nullspace N (Ǎ) = {x|Ǎx = 0}. So (35b) is solved by359

δq̌ = Ňξ, (36)

where ξ ∈ Rndof are independent variations and ndof denotes the degrees of freedom. Left-360

multiplying (35a) by ŇT and substituting (36) to (35a) gives361

Mξ̈ + Cξ̇ +Kξ = 0 (37)

where362

M = ŇTM̌Ň , C = ŇT

(
−∂F̌
∂ ˙̌q

)
Ň , and K = ŇT

(
−∂F̌
∂q̌

−
∂
(
ǍTλe

)
∂q̌

)
Ň (38)
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are the reduced-basis mass matrix, reduced-basis tangent damping matrix, and reduced-basis363

tangent stiffness matrix, respectively. Such operations are known as the reduced basis method364

[56] and the nullspace matrix Ň can be computed by the singular value decomposition of Ǎ.365

At this point, we have a standard linear dynamic system (37), which can be used for366

the modal analysis of general tensegrity structures. For simplicity, consider undamped free367

vibration (C = 0), then the solution to (37) boils down to the generalized eigenvalue problem368 (
K− ρ(r)M

)
ξ(r) = 0 (39)

whereρ(r) is the rth eigenvalue in the order of increasing magnitude, andξ(r) is the correspond-369

ing eigenvector. According to the Lyapunov theorem on stability in the first approximation, the370

structure’s stability around static equilibrium is guaranteed by the positiveness of the lowest371

eigenvalue:372

ρ(1) > 0 (40)
For a detailed exposition of the static stability of constrained structures, we refer the373

interested readers to Ref. [56]. Once the stability criterion (40) is met, we can calculate the374

natural frequency of the rth mode by ω(r) =
√
ρ(r), and normalize the mode shape with375

respect to mass by ξ̂(r) =
1√
m(r)

ξ(r), where m(r) = ξT(r)Mξ(r). Then, the mode shapes in376

the natural coordinates can be obtained through377

q(r) = qe + Ěδq̌(r) = qe + ĚŇ ξ̂(r) (41)

4.3 Modified symplectic integration scheme for nonlinear dynamics378

Consider deployable tensegrity structures, such as tensegrity space booms [57] and tensegrity379

footbridge [58], which are capable to achieve large-range movements under cable-based actu-380

ation. The deployment process would take a sufficiently long time for safety reasons, but still381

exhibits rich behaviors [59] due to the complex rigid-tensile coupling in tensegrity dynamics.382

Therefore, when developing solution methods for the governing DAEs (30), attentions should383

be paid to the numerical performances in long-time simulations. In this regard, we adopt384

the Zu-class symplectic integration method [51, 52] which have advantages in two aspects:385

Firstly, it can produce realistic results with relatively large timesteps, because it preserves386

the symplectic map of conservative systems; it has no artificial dissipation; and it enforces387

the algebraic constraints; Secondly, it dispenses with the computations of accelerations (and388

acceleration-like variables as in the generalized-α method [60]) and the partial derivatives of389

the constraint force. Hence, the Zu-class method excels in numerical accuracy and efficiency390

for long-time simulations. Nonetheless, it did not originally accommodate non-conservative391

forces and boundary conditions that are present in the governing DAEs (30). To address these392

issues, a rework from the viewpoint of approximations and limits are carried out as follows.393

As illustrated in Fig. 7, the time domain is divided into equally spaced segments, where394

h is the timestep and (qk,pk) denotes the state vector at the segments’ endpoints. At each395

endpoint, we demand that the differential equation (31) holds as396

˙̌pk − F̌k − ǍT(qk)λk = 0 (42)
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Fig. 7 Equally spaced segments of the time domain. Each segment has two endpoints and one midpoint. The state
vector (qk,pk) is located at endpoint k.

Then, substituting central difference approximations397

˙̌pk ≈ 1
h

(
p̌k+1/2 − p̌k + p̌k − p̌k−1/2

)
, F̌k ≈ 1

2

(
F̌k−1/2 + F̌k+1/2

)
, and

λk ≈ 1
2

(
λk−1/2 + λk+1/2

) (43)

into (42) leads to a discrete scheme398

p̌k+1/2 − p̌k + p̌k − p̌k−1/2

h
−

F̌k−1/2 + F̌k+1/2

2
− Ǎ(qk)

T λk−1/2+λk+1/2

2 = 0 (44)

where the midpoint approximations are399

qk+1/2 ≈ 1
2 (qk + qk+1), q̇k+1/2 ≈ 1

h (qk+1 − qk),

p̌k+1/2 ≈ 1
hḾ(qk+1 − qk), and F̌k+1/2 ≈ F̌

(
qk+1/2, q̇k+1/2, tk+1/2

) (45)

Note that (44) is actually a two-timestep scheme, but can be converted to a one-timestep400

scheme. As illustrated in Fig. 7, the scheme (44) at endpoint k have terms in both segments401

#k and #(k+1). Taking the limit tk−1 → tk, we have402

lim
h→0

p̌k−p̌k−1/2

h/2 = ˙̌pk, lim
h→0

F̌k−1/2 = F̌k, and lim
h→0

λk−1/2 = λk (46)

which shows that the terms in segment #k tend to (42), so they can be dropped, leaving403

p̌k+1/2 − p̌k − h
2 F̌k+1/2 − h

2 Ǎ(qk)
Tλk+1/2 = 0 (47)

Similarly, taking the limit tk+1 → tk in (44) leads to404

p̌k − p̌k−1/2 − h
2 F̌k−1/2 − h

2 Ǎ(qk)
Tλk−1/2 = 0 (48)

Then, applying (48) to endpoint k+1, and combining it with (47) as well as the constraint405

equations, lead to a new scheme:406 
1
hḾ(qk+1−qk)− p̌k − h

2 F̌k+1/2 − h
2 Ǎ(qk)

Tλk+1/2 = 0

p̌k+1 − 1
hḾ(qk+1−qk)− h

2 F̌k+1/2 − h
2 Ǎ(qk+1)

Tλk+1/2 = 0

Φ̌(qk+1) = 0

(49a)

(49b)
(49c)
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We call it the modified symplectic integration (MSI) scheme, because it automatically includes407

boundary conditions through prescribed coordinates and allows for non-conservative forces408

given by F̌ . These two aspects were not considered in its original derivations [51]. To provide409

a solution procedure, rearrange (49a) and (49c) as a residual expression410

Res(xk+1) =

(
−hp̌k + Ḿ (qk+1 − qk)− h2

2 F̌k+1/2 − s1
h2

2 ǍT(qk)λk+1/2

Φ̌(qk+1)

)
(50)

where xk+1=[q̌T
k+1,λ

T
k+1/2]

T, and s1=2h−2 is a scaling factor [61] that is needed for better411

conditioning of the Jacobian matrix412

Jac(xk+1) =
∂Res

∂xk+1
=

[
M̌ − h2

2

∂F̌k+1/2

∂q̌k+1
−ǍT(qk)

Ǎ(qk+1) 0

]
(51)

The residual (50) and its Jacobian (51) allow us to solve for xk+1 using the Newton-Raphson413

iteration method. After that, xk+1 is substituted into (49b) to compute p̌k+1 explicitly.414

We can observe that accelerations q̈ and partial derivatives of the constraint force ǍT(q)λ,415

which are needed for other schemes [60], do not appear in (50) and (51).416

The complete solution procedure of MSI is summarized in Alg. 1.

Algorithm 1 Modified symplectic integration (MSI) scheme
Require: initial values q0 and q̇0; timestep h, total steps N , maximum iteration smax,

tolerance ϵtol
1: p0 ←Mq̇0
2: for k ← 0 to N − 1 do
3: q̌k+1 ← q̌k
4: λk+1/2 ← 0
5: xk+1 ← [q̌T

k+1,λ
T
k+1/2]

T

6: for s← 1 to smax do // Newton-Raphson iteration
7: compute Res by (50)
8: if ∥Res∥ > ϵtol then
9: compute Jac by (51)

10: ∆x← −(Jac)−1Res
11: xk+1 ← xk+1 +∆x
12: else
13: break
14: end if
15: end for
16: compute p̌k by (49b)
17: ˙̌qk ← M̌−1

(
p̌k − M̃ ˙̃qk

)
18: end for

417

17



5 Numerical examples and Discussion418

Numerical studies of four representative examples are presented in this section. The purpose419

is two-fold: (1) To exemplify three-dimensional general tensegrity structures composed of420

arbitrary rigid bodies and rigid bars; (2) To demonstrate the efficacy of the proposed unified421

approach for dynamic analyses of general tensegrity structures.422

The first example is used to illustrate the step-by-step application of the proposed approach423

for ease of reproducibility. The rest examples can be categorized into two groups. The first424

group includes examples 2 and 3 which are designed by algorithmic methods, such as the425

topology-finding method [27]. The second group includes examples 4 and 5 which are designed426

by intuitive methods, which will be called the “embedding” and “interfacing” methods. The427

connotation of the intuitive methods will be explained in subsections.428

The different dynamic behaviors of these structures will be demonstrated, and various429

complex conditions will be considered, including cable-based deployments, and mov-430

ing boundaries. Additionally, the proposed MSI scheme will be compared against the431

state-of-the-art method.432

5.1 Example 1: A demonstrative tensegrity structure433

This section presents a simple example to demonstrate the application of the proposed method434

of dynamic analyses of general tensegrity structures. As illustrated in Fig. 8, this tensegrity435

structure simply consists of three rigid bars, three cables and a tetrahedral rigid body. It is436

designed to be easily reproducible, but also to highlight the strength of the proposed method.437

In the following, the modeling procedure is described in a step-by-step manner.

 

Fig. 8 Illustration of the demonstrative tensegrity structure. (a) Three rigid bars numbered 1 , 2 , and 3 ; (b) A
tetrahedral rigid body numbered 4 ; (c) A tensegrity with ball-jointed rigid members and tensile cables.

438

Step 1. Description of the Three Rigid Bars439

Figure 8(a) shows three rigid bars as a building block for the whole structure. According440

to Sec. 2.2, each rigid bar is described by the “rr” type natural coordinates, whose initial441
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values are given by442

q1,rr = [rT1,i, r
T
1,j ]

T = [0.1, 0, 0,−0.067 50, 0.018 54, 0.1414]Tm
q2,rr = [rT2,i, r

T
2,j ]

T = [−0.050 00, 0.086 60, 0, 0.017 69,−0.067 73, 0.1414]Tm
q3,rr = [rT3,i, r

T
3,j ]

T = [−0.050 00,−0.086 60, 0, 0.049 81, 0.049 19, 0.1414]Tm
(52)

Each rigid bar has a length l = 0.22m, a virtual radius of cross-section r = 1.833×443

10−3 m, and a uniform density ρ = 630 kg/m3. According to Sec. 2.3, the mass matrix444

of each rigid bar is given by445

MI =

[
0.000 487 8 0.000 243 9
0.000 243 9 0.000 487 8

]
⊗ I3 for I = 1, 2, 3 (53)

Step 2. Description of the Tetrehedral Rigid Body446

Figure 8 (b) shows the tetrahedral rigid body as another building block for the whole447

structure. According to Sec. 2.1.1, there are four types of natural coordinates to be used.448

Anticipating the next step which will deal with ball joints, it is convenient to use the449

“rrrw” type natural coordinates q4,rrrw = [rT4,i, r
T
4,j , r

T
4,k,w

T
4 ]

T which consists of three450

basic points located at the lower three vertices of the tetrahedron. The base vector w4451

can then be automatically generated.452

The tetrahedron has a height h = 0.070 71m, a circumradius R = 0.07m for the453

base triangle, above which the mass center is located at r̄g = [0.0, 0.0, 0.0148229]m.454

And the mass and inertia matrix are given by, respectively, m = 0.2999 kg and Ī =455

diag (0.7664, 0.7664, 1.246) × 10−3kgm2. According to Sec. 2.3, the mass matrix of456

the tetrahedral rigid body is given by457

M4 =


0.089 85 0.005 060 0.005 060 0.1164
0.005 060 0.089 85 0.005 060 0.1164
0.005 060 0.005 060 0.089 85 0.1164
0.1164 0.1164 0.1164 1.290

⊗ I3 (54)

Step 3. Description of Ball Joints458

Utilizing the flexibility of the proposed modeling method, ball joints can be described459

conveniently without introducing additional constraints. Referring to Fig. 8 (c), there are460

two kinds of ball joints.461

(a) The first kind connects the upper ends of the bars to the tetrahedral rigid body.462

According to Sec. 3.1, they can be described by sharing the basic points. Con-463

sequently, the natural coordinates for the tetrahedral rigid body are replaced464

by465

q4,rrrw = [rT3,j , r
T
1,j , r

T
2,j ,w

T
4 ]

T (55)
(b) The second kind connects the lower ends of the bars with the ground, constituting466

boundary conditions. According to Sec. 3.2, they can be described by specifying the467
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matrices468

ẼI =

1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

 and ĚI =

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 for I = 1, 2, 3 (56)

Consequently, the free coordinates for rigid bars are given by q̌I = ĚIqI,rr =469

rI,j , for I = 1, 2, 3.470

Step 4. Description of the System’s Coordinates and Mass matrix471

At this point, the prescribed, free, and total coordinates for the entire system can be472

determined as473

q̃ =
[
rT1,i, r

T
2,i, r

T
3,i,
]T

q̌ =
[
rT1,j , r

T
2,j , r

T
3,j ,w

T
4

]T
q =

[
rT1,i, r

T
1,j , r

T
2,i, r

T
2,j , r

T
3,i, r

T
3,j ,w

T
4

]T (57)

We can see that the justified usage of the sharing basic points and the prescribed coordi-474

nates greatly simplifies the description of the ball joints. As a result, 12 free coordinates475

and 9 intrinsic constraints (1 for each bar and 6 for the rigid body) will become the476

unknowns in the dynamic equation. No extrinsic constraints are required.477

The system’s separation matrices Ẽ and Ě and the selection matrices for rigid members478

in (19) can be expressed explicitly. For example, we have479

T1 =

[
1 0 0 0 0 0 0
0 1 0 0 0 0 0

]
⊗ I3 and T4 =


0 0 0 0 0 1 0
0 1 0 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 0 0 1

⊗ I3 (58)

for the rigid bar 1 and the tetrahedron 4 , respectively.480

Furthermore, the system’s mass matrices M =
∑nb

I=1 T
T
I MITI can be easily481

assembled.482

Step 5. Desciption of the Cables and Tensile Forces483

Referring to Fig. 8 (c), tensile cables are added to connect the lower end of rigid bars484

and the lower vertices of the tetrahedron. For example, the vector l1 represent the first485

cable is formulated by (23) as486

l1 = r4,i − r1,i = C4,iT4q −C1,iT1q = J1q (59)

We can see that this formula is valid regardless of the type of rigid members to which the487

cable connects, thanks to the unifying form (9). Then, the system’s generalized tension488

force Q̌ can be derived, following the rest of Sec. 3.4, where the selection matrices (58)489

automatically take care of the sharing coordinates.490

Each cable has a stiffness coefficient κ = 1 × 103 Nm−1, a damping coefficient491

η = 2Nm−1 s−1, and a rest length µ = 0.05m.492
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Step 6. Dynamic Equations and Dynamic analysis493

Using the above intermediate results, the formulation of the dynamic equations (30)494

becomes straightforward. Typically, the system is analyzed in three steps:495

(a) Seek the static equilibrium configuration of the system by solving the inverse statics496

problem (33) or by solving a dynamic relaxation problem.497

(b) Determine the stability and natural frequencies of the system by solving the498

eigenvalue problem (39) of the linearized dynamic equation.499

(c) Study the nonlinear dynamic response of the system by solving the nonlinear500

dynamic equation (30) using the proposed MSI scheme.501

Here, we directly perform the (c) step with a timestep size h = 1 × 10−3 m for 1502

second. Figure 9 plots the trajectory of the point r4,i, showing that the dynamic responses503

are vibrational and are slowly damped as time progresses.504

t (s)
0.0 0.5 1.0

Co
or

di
na

te
s (

m
)

0.05

0.10

0.15

x
y
z

Fig. 9 Time histories of the trajectory of the point r4,i in the x, zy, and z directions, respectively.

5.2 Example 2: A fusiform tensegrity structure505

Fig. 10 (a) Dimensions of a rigid square board; (b) Initial configuration of a fusiform tensegrity structure composed
of a rigid bar and a rigid square board.

This example considers a three-dimensional fusiform tensegrity structure, involving a506

punctured square rigid board and a rigid bar. In a study of topology-finding method [27],507
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Fig. 11 Snapshots of the fusiform tensegrity structure at different time instances simulated by (a,b,c,d,e) the MSI
scheme and (f,g,h,i,j) the generalized-α scheme. Blue dots indicate the marker point.
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Fig. 12 (a) Trajectories of the marker point in the y-direction and (b) time histories of the mechanical energy E
given by the MSI scheme and generalized-α scheme.

this structure represents one of the simplest Class-1 general tensegrities. A variant of this508

structure, which replaces the punctured square with a triangle, is studied by Liu et al. [26] as a509

tensegrity robot. However, due to difficulties arising from the heterogeneity of rigid members,510

the dynamic characteristics of this structure were not studied in the above references. To511

demonstrate its rich dynamic motions, an initially unbalanced configuration, where the rigid512

board is rotated around the x-axis by 45°, and the rigid bar is rotated around the y-axis by 15°,513

as shown in Fig. 10 (b). Both rigid members are given a uniform density ρ = 630 kgm−1,514

corresponding to teak wood. All eight cables have a stiffness coefficient κ = 100Nm−1 with515

no damping. The upper four cables are given rest length µ = 0.05m, while the lower four516

ones have µ = 0.1m. The structure is free-floating.517

Consider 100-second long-time simulations with timestep h = 1 × 10−3 s, carried out518

by the MSI scheme and the generalized-α scheme [60]. Fig. 11 visualizes the structural519

movements, while Fig. 12 compares the trajectories of the marker point and the mechanical520

energy E = T + V produced by the two schemes. These results show that the motions of a521

3D rigid bar are correctly described by the natural coordinates without any difficulty, and that522
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the trajectories between the two schemes are very close in the beginning of the simulations.523

In particular, the MSI scheme conserves the mechanical energy E and obtains vibrations524

between the two rigid members throughout the entire process. In contrast, the generalized-α525

scheme with ρ∞ = 0.7 gradually damps out such high-frequncy vibrations and dissipates526

the associated energy. Therefore, the MSI scheme is more suitable to faithfully simulate the527

long-time dynamics of general tensegrity structures.528

5.3 Example 3: A tensegrity bridge529

Fig. 13 Schematic figures of the tensegrity bridge from (a) left view, (b) top view, and (c) oblique view with a
concentrated loading force. Blue dots indicate the marker point.

Fig. 14 The mode shapes and natural frequencies for the first four vibration modes of the tensegrity bridge. The
configuration of static equilibrium is colored in gray for reference.

This example is a Class-1 tensegrity bridge composed of a rectangular rigid body as the530

bridge deck and inclined rigid bars as supporting struts, as shown in Fig. 13. It represents531

another example resulting from the design method of topology-finding [27]. Because the bars532

have no contact with the deck, it is a class-1 tensegrity structure. Each rigid bar has a length533

l = 15.95m and a virtual radius of cross-section r = 0.13m, and the deck has dimensions534

24m × 6m × 0.25m (length × width × height). Note that material properties were not535

considered in the above reference. For demonstration purpose, rigid members are given a536

uniform density of teak wood ρ = 630 kg/m3, and cables are given a stiffness coefficient537
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Fig. 15 Trajectories of the loading point in the z-direction for the three simulation cases with different excitation
frequencies.

κ = 25.92 kNm−1. Furthermore, the lower end of each bar is fixed to the ground, so that the538

structure can support self-weight and loading forces.539

Due to the heterogeneity between rigid bodies and rigid bars, it is difficult to obtain refer-540

ence results for the dynamic behaviors of the bridge in commercial software that uses minimal541

coordinates, such as Adams. Therefore, in order to validate the dynamic formulations and the542

MSI scheme, the resonance phenomenon will be simulated. Firstly, a static equilibrium con-543

figuration and the rest lengths of cables are sought by the geodesic dynamic relaxation method544

[62]. Then, linearized dynamic analysis is performed to compute the natural frequencies and545

mode shapes which reveal how the structure vibrates around the initial static equilibrium.546

The first four vibration modes are shown in Fig. 14. In particular, a tilting movement of the547

deck can be observed from the second mode with a natural frequency 0.553Hz. Based on548

this observation, the nonlinear dynamics simulations can be validated by inducing vibrations549

resonating with this frequency. To this end, a concentrated loading force f(t) with different550

frequencies is exerted to the edge of the deck, as shown in Fig. 13 (c). The force magnitude is551

a function of time f(t) = 2 × 104 (sin (2πνt) + 1)N, where ν = 0.453, 0.553, 0.653Hz are552

three excitation frequencies, representing three simulation cases. Nonlinear dynamic simula-553

tions for 10 seconds are performed for each case with timestep h = 1× 10−2 s, using the MSI554

scheme. Trajectories of the loading point in the z-direction is plotted in Fig. 15. It shows that555

the amplitude of response is significantly increased only for ν = 0.553Hz, indicating vibra-556

tions resonant with the second mode, and hence validates the proposed modeling formulations557

and integration scheme.558

5.4 Example 4: A tensegrity structure designed by embedding559

5.4.1 Structural design using the “embedding” method560

Besides using algorithmic methods such as topology-finding, intuitive methods are also viable561

to design general tensegrity structures. One such method can be called “embedding” as562

exemplified by Fig. 16. Firstly, the design process starts with known primitive tensegrities,563

such as a rotatable Class-2 tensegrity with two tetrahedrons in contact (Fig. 16 (a)), and a564

deployable 2-stage tensegrity prism (Fig. 16 (b)). Secondly, the latter one can be embedded into565

the former one, replacing the ball joint (Fig. 16 (c)). Lastly, multiple modules can be stacked566

sequentially to build a multi-stage structures (Fig. 16 (d,e)). In this way, the new structure is a567

Class-3 tensegrity endowed with the rotatable and deployable functionalities of the primitives.568

Note that the “embedding” method is akin to the concept of “self-similar” iterations569

(See, for example, Ref. [3]), but not limited to “bars-only” compressive tensegrity structures.570
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Fig. 16 Schematic figures of (a,b) the primitive tensegrities, (c) a “embedded” tensegrity structure, and a 4-stage
“embedded” tensegrity structure in the (d) folded and (e) unfolded configurations.

Further in-depth investigations are still needed to broaden the applications of the “embedding”571

method, but those are beyond the scope of this paper.572

The structural properties are as follows. Each rigid bar has a length l = 0.14m and a virtual573

radius of cross-section r = 1.167 × 10−3 m, and the triangular rigid plate has a side length574

l = 0.2939m and a height h = 0.01m. All rigid members are given a uniform density of teak575

wood ρ = 630 kg/m3, and tensile cables are given a stiffness coefficient κ = 25.92 kNm−1.576

Furthermore, to support the structure’s self-weight, the lowermost plate is fixed to the ground577

by giving boundary conditions.578

5.4.2 Determining the cable-based actuation values579

Deployments of the structure are achieved by cable-based actuation [59, 63], which is imple-580

mented by timely changing the rest lengths of the cables µ. In other words, the variables µ(t)581

in the dynamic equations (30) are specified as a time-dependent function during the simu-582

lation. As time progresses, the internal unbalanced tensile forces due to varied rest lengths583

cause the structure to move.
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Fig. 17 The time-dependent interpolation functions of the tensile cables’ rest lengths µ(t).
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To ensure that the structure reaches the desired configuration and a smooth transition584

during the deployment process, the actuation values, i.e. µ(t), are determined by the following585

steps:586

1. Specify the reference configurations of the tensegrity structure as shown in Fig. 16 (d)587

and (e), which consist of the positions and orientations of all the rigid members.588

2. Specify the rest lengths of inactive cables. In this example, the cables belonging to589

the inner prisms are considered active, while the outer there cables of each stage are590

considered inactive, which are given predefined rest lengths 0.17m, 0.15m and 0.19m.591

3. Establish an inverse statics problem (33) with minimum force constraints and solve for592

the rest lengths of the active cables. For the folded configure Fig. 16 (d), the results are593

shown in µdiagnal = 0.050 66m, µmiddle = 0.1390m. For the unfolded configuration594

Fig. 16 (e), we have µdiagnal = 0.1024m, µmiddle = 0.069 38m.595

4. Construct the time-dependent actuation function µ(t) by interpolating between the cal-596

culated rest lengths corresponding to different reference configurations of the structure.597

For demonstration purposes, the function µ(t) is constructed such that the active cables598

are released in a stage-by-stage manner, as shown in Fig. 17.599

5.4.3 Dynamic simulation of the Deployment process600

Before simulating the deployment process, it is necessary to determine the initial configuration601

of the structure. To this end, the geodesic dynamic relaxation method [62] is used to obtain the602

initial configuration, which is in static equilibrium under the tension loads and external loads603

(e.g. gravity), as shown in Fig. 18 (a). The dynamic process of the system is then simulated604

by the proposed MSI scheme with time step size h = 4× 10−3 s over a time span of 60 s.605

During the simulation, the structure’s rest lengths are adjusted according to the interpolated606

time-dependent functions (Fig. 17), resulting in a stage-by-stage deployment of the structure.607

Additionally, the uneven tensions of the outer cables induce the structure to move in an608

asymmetric inclination, which is more prominent in the unfolded configuration (Fig. 18609

(b-e)) than in the folded configuration. for an analysis of how the actuations influence the610

movement and stability of the structure. Fig. 19 plots the trajectories of the marker point in611

the deployment process, showing that small vibrations occur during the dynamic deployment612

due to rigid-tensile coupling. The reduction of such vibrations is subject to further research.613

5.5 Example 5: A tensegrity structure designed by interfacing614

5.5.1 Structural design by the “interfacing” method615

Another intuitive design methods can be called “interfacing”, as exemplified by Fig. 20.616

Consider again the two tensegrity primitives in example 4, as shown in Fig. 20 (a,c). Addi-617

tionally, a spine-like tensegrity primitive [64], composed of 2 tetrahedrons and 6 cables, are618

introduced as an interface to connect the former two, leading to a new multi-stage tower-like619

structure Fig. 20 (d,e). In this way, the new structure also acquires the ability of rotations and620

deployments, albeit at different stages. The advantage of the “interfacing” method is that it621

can extend an existing structure, without altering its internal topology. Thus, it automatically622

leads to modular structure designs, and can be easily combined with other methods, such as623

topology-finding and the “embedding” method.624
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Fig. 18 Snapshots of the 4-stage “embedded” tensegrity structures during cable-based deployment. Blue dots indicate
the marker point.

t (s)
0 10 20 30 40 50 60

x
(m

)

−0.20

−0.15

−0.10

(a)

t (s)
0 10 20 30 40 50 60

y
(m

)

−0.22

−0.20

−0.18

−0.16

(b)

t (s)
0 10 20 30 40 50 60

z(
m

)

0.3

0.4

0.5

0.6
(c)

Fig. 19 Trajectories of the marker point in (a) x, (b) y, and (c) z directions.

Fig. 20 Schematic figures of (a,b,c) the primitive tensegrities, the (d) initial and (e) target configurations of the
tower-like tensegrity structure designed by interfacing.

The structural properties are as follows. Each rigid bar has a length l = 0.22m, a virtual625

radius of cross-section r = 1.833 × 10−3 m, and a uniform density ρ = 630 kg/m3. Each626

tetrahedron has a height h = 0.070 71m, a circumradius r = 0.1m for the base triangle,627
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with mass m = 0.2999 kg and inertia matrix Ī = diag (0.7664, 0.7664, 1.246)×10−3kgm2.628

Tensile cables in the prism are given the stiffness coefficient κ = 1× 103 Nm−1. Otherwise629

κ = 5× 102 Nm−1. All tensile cables have the same damping coefficient η = 2Nm−1 s−1.630

The lower ends of the tensegrity prism are fixed to the ground.631

5.5.2 Determining the resonance frequencies632

During the deployment process, the natural frequencies of the structure are also varied con-633

tinuously. This fact allows us to validate the dynamic formulations and the MSI scheme by634

simulating the resonance phenomenon. To this end, the expected resonance frequencies are635

determined in the following steps.636

1. Obtain the two static equilibrium configurations (Fig. 20(d,e)) with different cable rest637

lengths, using the geodesic dynamic relaxation method [62]. These two static equilibria638

will be referred to as the initial and target states for the deployment process.639

2. Linearize the dynamics of the structure around the two static equilibrium states, according640

to Sec. 4.2.641

3. Solve the generalized eigenvalue problem (39). The resulting lowest natural frequencies642

for these two states are ξ = 1.255Hz and ξ = 0.8289Hz, respectively. The first three643

vibration modes of the target state are calculated by (41) and shown in Fig. 21. It can644

be observed that the first two modes (Fig. 21 (a,b)) correspond to bending movements645

in the x and y directions, while the third mode (Fig. 21 (c)) corresponds to the torsional646

movement along in the z direction.647

Fig. 21 The mode shapes of the first three vibration modes of the tower-like tensegrity structure in target configuration.
The configuration of static equilibrium is colored in gray for reference.

5.5.3 Dynamic simulation of the Deployment process648

In the dynamic simulation of the deployment process, the ground under the structure is649

subject to a seismic wave in the x direction x(t) = 0.003 sin(ν2πt)m, where ν is the seismic650

frequency. According to the results obtained in Sec. 5.5.2, it is expected that resonances would651

occur during deployment if the seismic frequency ν is within the range [0.8289, 1.255]Hz.652

To verify this prediction, cable-based deployment simulations are carried out with three653

different seismic frequencies ν = 0, 0.7, 1.0 Hz. An 80-second simulation with 60-second654

deployment time is carried out. Trajectories of the marker point are plotted in Fig. 22. It655
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Fig. 22 Trajectories of the marker point in the (a) x-direction and (b) the enlargement view for the three deployment
cases.

Fig. 23 Snapshots of the tower-like tensegrity structure during deployment with seismic frequency ν = 1.0Hz.
Dash blue lines indicate slack cables. The deployment on static ground is colored in gray for reference in (b). Blue
dots indicate the marker point.

shows that the amplitude of response in the x direction is significantly increased only for656

ν = 1.0Hz, verifying our prediction. In fact, the resonant vibrations are large enough to657

cause cable-slacking, as shown in Fig. 23 (b). To sum up, these results validate the proposed658

approach and demonstrate its efficacy in dealing with complex conditions, including slack659

cables, cable-based deployment, and moving boundary conditions.660

5.6 Discussion661

In this section, five examples were presented for demonstrating the effectiveness of the662

proposed approach.663

These examples range from simple mechanisms to full-scale bridge and multistage deploy-664

able structures. Therefore, they demonstrate the broad applicability of the proposed approach665

and encourage collaboration between different engineering disciplines, including civil engi-666

neering, aerospace engineering, and robotics. In particular, examples 4 and 5 demonstrate the667

“embedding” and “interfacing” methods as two intuitive methods to build innovative, scal-668

able and deployable tensegrity structures, that were not previously conceived in the literature.669

Therefore, they represent important directions in further research in the practical design of670

tensegrity structures, such as large-scale space structures.671

The innovations in the examples are made possible only by the two main contributions of672

the proposed approach. The first is the fully nonminimal description that covers the heteroge-673

neous rigid members by offering the flexibility to arrange basic points and base vectors. The674

second is the unified formulation of the tension forces of cables based on polymorphism and675
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conversion matrices. These two aspects are best demonstrated by example 1, where the com-676

plexity of tensioned, boundary-conditioned, ball-jointed rigid bodies and rigid bars are easily677

handled by the proposed method.678

The advantages of the nonminimal methods in previous works of “bars-only” tensegrity679

structures [33–37] are retained. Namely, the dynamic formulations are free from trigonometric680

terms, having an elegant form of DAEs with a constant mass matrix, and having linear681

dependence on the cable variables. These features mean that the established dynamic control682

schemes problems [19, 38] for “bars-only” tensegrity structures can be ported to general683

tensegrity structures with little effort.684

Since the proposed dynamic formulations lead to a set of DAEs, the correct treatments685

of algebraic constraints are crucial to obtain accurate results of linearized and nonlinear686

dynamic analysis problems. For modal analysis of the linearized dynamics around static687

equilibrium, the reduced-basis method to used to obtain the correct natural frequencies and688

modal shapes. For the numerical integration of constrained nonlinear dynamics, while the689

existing methods in the tensegrity literature predominantly employ the constraint correction690

method [65, 66], this paper proposes the MSI scheme that directly solves the discretized691

DAEs, such that the constraints are satisfied at every time step and longtime simulations are692

accurate. Compared to the original Zu-class symplectic schemes [51, 52], the proposed MSI693

scheme can accommodate non-conservative forces and boundary conditions, thereby ensuring694

the applicability and robustness to a broad range of tensegrity dynamics.695

6 Summary, conclusions, and future directions of research696

In this paper, we develop a unified approach for dynamic analysis of general tensegrity struc-697

tures. Our method consists of a fully nonminimal description based on natural coordinates,698

a unified formulation of tension forces using polymorphism and conversion matrices, and a699

modified symplectic integration (MSI) scheme for numerical simulations of constrained non-700

linear dynamics. The effectiveness and broad applicability of this approach were demonstrated701

through five diverse examples, from simple mechanisms to complex deployable structures.702

The key conclusions are as follows. The heterogeneity between 6-DoF rigid bodies and 5-703

DoF rigid bars is resolved by the non-minimal description of natural coordinates. Four and two704

types of natural coordinates are derived for a 3D rigid body and a rigid bar, offering the flexibil-705

ity to arrange basic points and base vectors. The idea of polymorphism unifies different types706

of coordinates, and thereby facilitates the formulations for ball joints, boundary conditions,707

and cables’ tension forces for general tensegrity structures. The resulting dynamic equation708

has a constant mass matrix and is free from trigonometric functions. Using the reduced-basis709

method, the governing DAEs can be linearized around static equilibrium and then reduced to a710

linear system for modal analysis. The one-timestep MSI scheme not only yields realistic results711

for energy and vibrations in long-time simulations, but also accommodates non-conservative712

forces and boundary conditions. Five representative numerical examples are presented. Exam-713

ple 1 provides a detailed step-by-step demonstration of the proposed approach. Examples 2714

and 3 are general tensegrity found in the topology-finding literature, while examples 4 and 5715

are novel multi-functional structures created by two intuitive ways, namely the “embedding”716

and “interfacing” methods. Various complex situations, including dynamic external loads,717
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cable-based deployment, and moving boundaries, demonstrate the efficacy of the proposed718

approach for the dynamic analysis of general tensegrity structures.719

Regarding future research directions, the proposed approach can be extended to include720

massive cables. In this direction, the cable’s mass can be distributed as point masses associated721

with the cable’s nodes [37]. In the simplest case, which assumes no lateral displacement of the722

cable [59], the cable’s point mass can be included in the mass matrices of the rigid members.723

Furthermore, sliding cables with clustered actuation [67–70] can also be considered. These724

clustered cables can slide through pulleys on the rigid members, thereby reducing the number725

of driving motors at the expense of increasing the coupling across multiple modules of the726

entire tensegrity structure. Finally, the linear dependence on cables’ force densities (26) can727

be exploited for optimization the structural stiffness under external loads [29, 71–73] and the728

design of control schemes [19], aiming to integrate structure and control design as for classical729

tensegrity systems [74].730
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